Effect of Facilitative Interaction of Sorghum-Cowpea Intercrop on Sorghum Growth Rate and Yields

Andrew Ogolla Egesa, Steven Njeru Njagi, Catherine Wanjiku Muui


Change in temperature and rainfall patterns has resulted in lower midlands of Kenya to become hotter and drier, resulting in lower sorghum yields in these marginal areas. A field experiment was conducted in Eastern Kenya using cowpea-sorghum intercropping to compensate lower sorghum yields. Random complete block design (RCBD) was adopted with four intercropping patterns (treatments) replicated four times. The different intercropping patterns, included: sole sorghum [1(0), control], sorghum-cowpea intercropping [1(1)], sorghum-cowpea-lines ratio [2(3)], mixed sorghum-cowpea sowing. Plant height, number of leaves and leaf broadness were recorded at every 13 days, initiated 7 days after emergence. The total grain yield was measured at harvesting. Data collected was subjected to analysis of variance (ANOVA) using scientific analysis software (SAS, 9.1), and means separated at Fishers 0.05 LSD. Sorghum in pattern 1, produced broader leaves and higher yield of sorghum grains, (2.9 t ha-1). Pattern 2 (2.5 t ha-1), and 3 (2.3 t ha-1), resulted in relatively lower yields. The sole crop-sorghum [1(0)] was the poorest at 1.8 t ha-1, yielding below the cultivar potential of 2t ha-1. Sorghum-cowpea uniform intercropping [1(1)] resulted in higher sorghum yield potentially due to fertility advantage of legume crop. This results indicate the importance of using suitable intercropping patterns for realization of intercropping benefits in areas with low soil fertility and erratic rainfall.


Climate change; High Yields; Intercropping; Low inputs; Sorghum; Yield security

Full Text:



Ampong-Nyarko, K., K.V.S. Reddy, R.A. Nyang'or and K.N. Saxena. 1994. Reduction of insect pest attack on sorghum and cowpea by intercropping. Entomologia Experimentalis et Applicata. 70(2): 179-184.

Araújo, S.S., S. Beebe, M. Crespi, B. Delbreil, E. M. González, V. Gruber, I. Lejeune-Henaut, W. Link, M.J. Monteros, E. Prats, I. Rao, V. Vadez and M.C.V. Patto. 2015. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. Crit. Rev. Plant Sci. 34:237-280.

Awal, M.A., H. Koshi and T. Ikeda. 2006. Radiation interception and use by maize/peanut intercrop canopy. Agric. Forest Meteorol. 139(1–2): 74-83.

Bai, W., Z. Sun, J. Zheng, G. Du, L. Feng, Q. Cai, N. Yang, C. Feng, Z. Zhang, J.B. Evers, W. van der Werf, and L. Zhang. 2016. Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agric. Water Manag. 178: 281-290.

Bedoussac, L. and E. Justes. 2010. The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil. 330(1): 19-35.

Betencourt, E., M. Duputel, B. Colomb, D. Desclaux and P. Hinsinger. 2012. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol. Biochem. 46: 181-190.

Bidlake, W.R. 2000. Evapotranspiration from selected fallowed agricultural fields on the Tule lake national wildlife refuge, california, during May to October 2000. U.S. Geological Survey-Water-Resources Investigations Report 02-4055. Washington.2002.

Boudreau, M.A. 2013. Diseases in intercropping systems. Ann. Rev. Phytopathol. 51: 499–519.

Brooker, R.W., A.J. Karley, A.C. Newton, R.J. Pakeman, C. Schöb. 2016. Facilitation and sustainable agriculture: a mechanistic approach to reconciling crop production and conservation. Funct. Ecol. 30(1): 98-107.

Cavagnaro, T.R., S.F. Bender, H.R. Asghari and M.G.A.v.d. Heijden. 2015. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 20(5): 283-290.

Ceotto, E., M.D. Candilo, F. Cartelli, F.W. Badeck, F. Rizza, C. Soave, A. Volta, G. Villani and V. Marletto. 2013. Comparing solar radiation interception and use efficiency for the energy crops giant reed (Arundo donax) and sweet sorghum (Sorghum bicolor L. Moench.). Field Crops Res. 149: 159–166

Chen, B., X. Ma, G. Liu, X. Xu, F. Pan, J. Zhang, S. Tian, Y. Feng and X. Yang. 2015. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate–cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape. Environ. Sci. Poll. Res. 22(22): 17625-17635.

Chimonyo, V.G.P., A.T. Modi and T. Mabhaudhi. 2016. Simulating yield and water use of a sorghum–cowpea intercrop using APSIM. Agric. Water Manag. 177: 317-328.

Chou, C.-H. 1999. Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit. Rev. Plant Sci. 18(5): 609-636.

Cong, W.-F., E. Hoffland, L. Li, J. Six, J.-H. Sun, X.-G. Bao, F.-S. Zhang and W. Van Der Werf. 2015. Intercropping enhances soil carbon and nitrogen. Global Change Biol. 21(4): 1715-1726.

Cousins, A.B., N.R. Adam, G.W. Wall, P.J. Pinter, M.J. Ottman, S.W. Leavitt and A.N. Webber. 2003. Development of C4 photosynthesis in sorghum leaves grown under free air CO2 enrichment. J. Exp. Bot. 54(389): 1969-1975.

Crème, A., C. Rumpel, F. Gastal, M. de la Luz Mora Gil and A. Chabbi. 2016. Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms. Plant Soil. 402(1): 117-128.

Döring, T.F. 2015. Grain Legume Cropping Systems in Temperate Climates. In: De Ron, A.M. (Ed.), Grain Legumes. Springer New York, pp. 401-434.

Garg, N. and Geetanjali. 2007. Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain. Dev. 27: 59–68.

Graham, P.H. and C.P. Vance. 2003. Legumes: importance and constraints for greater use. Plant Physiol. 131: 872–877.

Hauggaard-Nielsen, H., P. Ambus, E.S. Jensen. 2001. Interspecific competition, N use and interference with weeds in pea–barley intercropping. Field Crops Res. 70(2): 101-109.

Hauggaard-Nielsen, H., P. Lachouani, M.T. Knudsen, P. Ambus, B. Boelt, R. Gislum. 2016. Productivity and carbon footprint of perennial grass–forage legume intercropping strategies with high or low nitrogen fertilizer input. Sci. Total Environ. 541: 1339-1347.

Himanen, S., H. Mäkinen, K. Rimhanen, R. Savikko. 2016. Engaging farmers in climate change adaptation planning: assessing intercropping as a means to support farm adaptive capacity. Agriculture. 6(3): 34.

Hinsinger, P., E. Betencourt, L. Bernard, A. Brauman, C. Plassard, J. Shen, X. Tang and F. Zhang. 2011. P for Two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156(3): 1078-1086.

Hu, F., Y. Gan, Q. Chai, F. Feng, C. Zhao, A. Yu, Y. Mu and Y. Zhang. 2016. Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. Field Crops Res. 198: 50-60.

Huang, C., Q. Liu, F. Gou, X. Li, C. Zhang, W. van der Werf and F. Zhang. 2017. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Res. 201: 41-51..

Isaac, M.E., P. Hinsinger and J.M. Harmand. 2012. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions. Sci. Total Environ. 434: 71-78.

Kolawole, G.O. 2012. Effect of phosphorus fertilizer application on the performance of maize/soybean intercrop in the southern Guinea savanna of Nigeria. Arch. Agron. Soil Sci. 58(2): 189-198.

Kumar, J., A.K. Choudhary, R.K. Solanki and A. Pratap. 2011. Towards marker-assisted selection in pulses: A review. Plant Breed. 130:297-313.

Li, C., Y. Dong, H. Li, J. Shen and F. Zhang. 2016. Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted. Sci Rep. 2016; 6: 18663.

Lithourgidis, A., C. Dordas, C. Damalas and D. Vlachostergios. 2011. Annual intercrops: an alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 5(4): 396-410.

Lopes, T., S. Hatt, Q. Xu, J. Chen, Y. Liu and F. Francis. 2016. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control. Pest Manag. Sci. 72(12): 2193-2202.

Malézieux, E., Y. Crozat, C. Dupraz, M. Laurans, D. Makowski, H. Ozier-Lafontaine, B. Rapidel, S. de Tourdonnet, M. Valantin-Morison. 2009. Mixing plant species in cropping systems: concepts, tools and models: A review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (Eds.), Sustainable Agriculture. Springer Netherlands, Dordrecht, p. 329-353.

Mao, L., L. Zhang, W. Li, W. van der Werf, J. Sun, H. Spiertz and L. Li. 2012. Yield advantage and water saving in maize/pea intercrop. Field Crops Res. 138: 11-20.

Mburu, J. (Ed). 2002. Field crops technical handbook. Government printers- The ministry of agriculture and rural development. Nairobi.

Midmore, D.J. 1993. Agronomic modification of resource use and intercrop productivity. Field Crops Res. 34(3): 357-380.

Mohammed, I.B., O.O. Olufajo, B.B. Singh, S. Miko and S.G. Mohammed. 2008. Evaluation of yield of components of sorghum/cowpea intercrops in the sudan savanna ecological zone. ARPN J. Agric. Biol. Sci. 3(3):30-37

Monti, M., A. Pellicanò, C. Santonoceto, G. Preiti and A. Pristeri. 2016. Yield components and nitrogen use in cereal-pea intercrops in Mediterranean environment. Field Crops Res. 196: 379-388.

Morel, M.A., V. Braña, and S. Castro-Sowinski. 2012. Legume crops, importance and use of bacterial inoculation to increase production. In: Goyal A (ed.), Crop Plant. InTech, doi: 10.5772/37413.

Mousavi, S.R and H. Eskandari. 2011. A general overview on intercropping and its advantages in sustainable agriculture. J. Appl. Environ. Biol. Sci. 1(11)482-486.

Mucheru, M., M. Matussom and J.M. Mugwe. 2009. Potential role of cereal legume intercropping systems in integrated soil fertility management in smallholder farming systems of Sub-Saharan Africa. Res. J. Agric. Environ. Manag. 3(3):162-174

Musa, E.M., A.E.A Elsheikh, I.A.M. Ahmed and E.E. Babiker. 2012. Intercropping sorghum (Sorghum bicolarL) and cowpea (Vignaunguiculata) effect of Bradyrhizobium inoculation and fertilization on mineral composition of sorghum seeds. ISRN Agronomy. 2012: 356183. doi:10.5402/2012/356183

Mwangi, M. 2013.The potential of sorghum in enhancing food security in semi-arid Eastern Kenya. J. Appl. Biosci.71:5786-5799

Naim, A.M., B. Kilali, A.E. Hassan and M.F. Ahamed. 2013. Agronomic evaluation of sorghum and cowpea intercropped at different spacial arrangement. J. Renewable Agric. 1(2):11-16

Nguyen, T.H and A. Blum. 2004. Physiology and biotechnology integration for plant breeding. Marcel Deckker, Inc., New York

Ning, J and J.R. Cumming. 2001. Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants. J. Exp. Bot. 52(362): 1883-1891.

Oseni, O. 2010. Evaluation of sorghum cowpea intercrops productivity in savanna agro ecology using competition indices. J. Argic. Sci. 2(3):229-234.

Otim Otim, G.A., D.N. Mubiru, J. Lwasa, J. Namakula, W. Nanyeenya, O. Robin and J. Elem. 2015. Evaluating permanent planting basin for optimum plant population for maize and beans. J. Environ. Agric. Sci. 2:2

Owuor, C. 2005. Row arrangement and nitrogen effects on growth and yield of sorghum-legume intercrops. Makerere University /RUFORUM. Msc. Thesis,School of Postgraduate Studies, Makerere University Kampala.

Poulton, C and K. Kanyinga. 2014. The politics of revitalising agriculture in kenya. Dev. Policy Rev. 32(s2), s151-s172.

Ramos, M. L. G., R. Parsons, J. I. Sprent and E. K. James. 2003. Effect of water stress on nitrogen fixation and nodule structure of common bean Pesq. agropec. bras. Brasília. 38(3): 339-347.

Rao, P.S., C. G. Kumar, R. S, Prakasham, A. U. Rao and B. S. Reddy. 2015. Sweet Sorghum: Breeding and bioproducts. In "Industrial crops" (V. Cruz and D. Dierig, eds.), Vol. 9, p. 1-28. Springer New York.

Ren, Y., J. Liu, Z. Wang and S. Zhang. 2016. Planting density and sowing proportions of maize–soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China. Eur. J. Agron. 72: 70-79.

Richards, R. 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 51(Suppl 1): 447-458.

Sanginga, N., K. Dashiell, J. Diels, B. Vanlauwe, O. Lyasse, R.J. Carsky, S. Tarawali, B. Asafo-Adjei , A. Menkir, S. Schulz, B.B. Singh, D. Chikoye, D. Keatinge and R. Ortiz. 2003. Sustainable resource management coupled to resilient germplasm to provide new intensive cereal-grain legume-livestock systems in the dry savanna. Agric. Ecosyst. Environ. 100: 305–314

Shuaibu, Y.M., A.A. Garba and N. Voncir. 2015. Influence of legume residue and nitrogen fertilization on the growth and yield of sorghum. African J. Food Agric. Nutr. Dev. 15(3):.2015.

Singh, B.B., H.A. Ajeigbe, S.A. Tarawali, S. Fernandez-Rivera and M. Abubakar. 2003. Improving the production and utilization of cowpea as food and as fodder. Field Crops Res. 84:169–177

Singh, H.P., D.R. Batish, R.K. Kohli. 2003. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit. Rev. Plant Sci. 22(3-4): 239-311.

Stern, W.R. 1993. Nitrogen fixation and transfer in intercrop systems. Field Crops Res. 34(3): 335-356.

Taffouo, V.D., B. Ngwene, A. Akoa and P. Franken. 2014. Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants. Mycorrhiza. 24: 361.

Trenbath, B.R. 1993. Intercropping for the management of pests and diseases. Field Crops Res. 34(3): 381-405.

Wahbi, S., Y. Prin, J. Thioulouse, H. Sanguin, E. Baudoin, T. Maghraoui, K. Oufdou, C. Le Roux, A. Galiana, M. Hafidi, R. Duponnois. 2016. Impact of wheat/faba bean mixed cropping or rotation systems on soil microbial functionalities. Front. Plant Sci. 7: 1364.

Weisany, W., S. Zehtab-Salmasi, Y. Raei, Y. Sohrabi, and K. Ghassemi-Golezani. 2016a. Can arbuscular mycorrhizal fungi improve competitive ability of dill + common bean intercrops against weeds? Eur. J. Agron. 75: 60-71.

Weisany, W., Y. Raei, S.Z. Salmasi, Y. Sohrabi and K. Ghassemi-Golezani. 2016b. Arbuscular mycorrhizal fungi induced changes in rhizosphere, essential oil and mineral nutrients uptake in dill/common bean intercropping system. Ann. Appl. Biol. 169(3): 384-397.

Xia, H.-Y., Z.-G. Wang, J.-H. Zhao, J.-H. Sun, X.-G. Bao, P. Christie, F.-S. Zhang and L. Li. 2013. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Res. 154: 53-64.

Xue, Y., H. Xia, P. Christie, Z. Zhang, L. Li and C. Tang. 2016. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann. Bot.117(3):363-377.

Yu, Y., S. Tjeerd-Jan, D. Makowski and W. van der Werf. 2015. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Res. 184: 133-144.

Zougmore, R., F.N. Kambou, K. Ouattara and S. Guillobez. 2000. Sorghum-cowpea intercropping: an effective technique against run-off and soil erosion in the Saleh Region. Arid Soil Res. Rehabil. 14(4):329-342.


  • There are currently no refbacks.

Copyright (c) 2016 Journal of Environmental and Agricultural Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Follow us at Facebook: https://www.facebook.com/journal.environmental.agricultural.sciences

GoogleScholar: https://goo.gl/qVGkkj